Graphene Optoelectronics based on Antidot Superlattices
نویسندگان
چکیده
Graphene is well known for its outstanding electronic, thermal, and mechanical properties, and has recently gained tremendous interest as a nanomaterial for optoelectronic devices. We review our recent efforts on exfoliated graphene with a particular focus on the influence of graphene’s chiral edges on the electronic and optical properties. We first show that Raman spectroscopy can not only be used for layer metrology but also to monitor the composition of graphene’s zigzag/armchair edges. To elucidate the role of the localized edge state density, we fabricated dye sensitized antidot superlattices, i.e. nanopatterned graphene. The fluorescence from deposited dye molecules was found to quench strongly as a function of increasing antidot filling fraction, whereas it was enhanced in unpatterned but electrically back-gated samples. This contrasting behavior is strongly indicative of a built-in lateral electric field of up to 260 mV accounting for p-type doping as well as fluorescence quenching due to dissociation of electron-hole pairs from attached dye molecules. Our study provides new insights into the interplay of localized edge states in antidot superlattices and the resulting band bending, which are critical properties to enable novel applications of nanostructured graphene for light harvesting and photovoltaic devices.
منابع مشابه
Localized States and resultant band bending in graphene antidot superlattices.
We fabricated dye sensitized graphene antidot superlattices with the purpose of elucidating the role of the localized edge state density. The fluorescence from deposited dye molecules was found to strongly quench as a function of increasing antidot filling fraction, whereas it was enhanced in unpatterned but electrically backgated samples. This contrasting behavior is strongly indicative of a b...
متن کاملPolaronic signatures and spectral properties of graphene antidot lattices
We explore the consequences of electron-phonon (e-ph) coupling in graphene antidot lattices (graphene nanomeshes), i.e., triangular superlattices of circular holes (antidots) in a graphene sheet. They display a direct band gap whose magnitude can be controlled via the antidot size and density. The relevant coupling mechanism in these semiconducting counterparts of graphene is the modulation of ...
متن کاملGeometrical effects on the thermoelectric properties of ballistic graphene antidot lattices
The thermoelectric properties of graphene-based antidot lattices are theoretically investigated. A third nearest-neighbor tight-binding model and a fourth nearest-neighbor force constant model are employed to study the electronic and phononic band structures of graphene antidot lattices with circular, rectangular, hexagonal, and triangular antidot shapes. Ballistic transport models are used to ...
متن کاملAn Investigation of the Geometrical Effects on the Thermal Conductivity of Graphene Antidot Lattices
In this work we investigate the thermal conductivity of graphene-based antidot lattices. A third nearest-neighbor tight-binding model and a forth nearest-neighbor force constant model are employed to study the electronic and phononic band structures of graphene-based antidot lattices. Ballistic transport models are used to evaluate the electronic and the thermal conductivities. Methods to reduc...
متن کاملMagnetoconductance oscillations in graphene antidot arrays
Epitaxial graphene films have been formed on the C-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. Nanoscale square antidot arrays have been fabricated on these graphene films. At low temperatures, magnetoconductance in these films exhibits pronounced Aharonov–Bohm oscillations with the period corresponding to magnetic flux quanta added to the area of a sing...
متن کامل